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The p~oblem of ship waves on the surface of an ~Inlte!y deep viscous fluid 
i s  o o ~ l d e r e d  i n  a s ~ l i £ 1 e d  f o r ~ l a t l o n :  the  s h i p  mo~L'~ w i t h  ~ n t  
velocity a l o n g  some curVillneaur Path  i n  an u n p e r t ~ b e d  f l u i d  l s  repl~ by 
a s~le disturbing center in the form of a pressure pulse on a free sur- 
face (*). 

1. We place the orlgln,of the coordinate system on the free surface of 
the  f l u i d  i n  the  e q u i l i b r i u m  pos i t l c~ ,aa~d  d i r e c t  t he  a - a x i s  v e r t l o a l l y  
upward, Le t  the  p r e s s u r e  pulse,  ( s h i p ]  move toward the  o r i g i n  0 o f  the  
c o o r d i n a t e  s y s t e m , w i t h  the  c o n s t a n t  v e l o c i t y  o a long  some c u r v i l i n e a r  
course L (Fig.l). 

In our subsequent discussion we largely follow the approach used in [ 2 
and 3]. 

The ship's course L can be considered a curve given by the par~etrlc 
e q u a t i o n s  

x l  = x l ( t ) ,  Y l  := Yl(t)i (t.1) 

where ~ is the time required for the ship to travel from some polnt 
Q(=~, y~ ) to its present position 0 • Let us choose the zero time reference 
in such a way that ~ - 0 corresponds to the or~in of the coordinate system. 
The po in ' c  • (x t  S ¥t ) t h e n  moves a i o n g  the  s h i p ' s  c o u r s e .  The s ~  o f  t h e  
waves i s  t o  be de t e rmined  a t  the  i n s t a n t  when t h e  s h i p  I s  a t  the  o r ~ l n .  The 
x - a x i s  i s  d i r e c t e d  & l o ~  the  taDgent  to  the  s h i p ' s  cou r se  Z a t  the  p o i n t  
0 i n  the  d i r e c t i o n  o p p o s i t e  t o  the  d i r e c t i o n  o f  mot ion  o f  the  s h i p .  The 
pa rame te r  ~ i n  E x p r e s s i o n s  (1 .1 )  i s  t h e  t ime t aken  w i t h  a n e g a t i v e  s i g n .  
The vector U tangent to the ship's course L at the point Q(Xt, ¥t ) is 
equal in absolute value to the velocity of the ship and directed opposite to 
the direction of the ship's motion. It is glven by 

dx  1 dy l  . 
~ c ----- u = ' - ~ -  i -~- -d-~J (1.2) 

The point p(~, ¥) at which the am~lltude of the surface waves Is computed 
iS g i v e n  by the  rldlus v e c t o r  

*) C h e r k e s o v ' s  paper  [1] appeared  a f t e r  the  w r i t i n g  o f  t he  p r e s e n t  a tud~;  
the  r e s u l t s  p r e s e n t e d  i n  [ 1 ] ,  however ,  app ly  o n l y  t o  a r e c t i l l ~ e a r  sh ip  
c o u r s e .  
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r =  ( x - - x  t) i q -  ( y - - y , ) j  ( t .3 )  

The angle 8 in Fig.l is the angle between the vector ~ and the velo- 
city @ of the ship. 

1 
I 

l P(x ,~)  

Fig. 1 

The elevation of the surface C(x, Y) at the 
point P(z, y) is determined by integrating the 
elevations due to a point pressure pulse movin E 
along L • Paper [4] contains an approximate 
expression f o r  this elevation due to a point pres- 
sure pulse on the surface of a viscous incompres- 
sible fluid of infinite depth 

m g t  a - - V g 2 t  ~ gt ~ 
~t --  8 V '2a l ) r  4 exp ~ s m ~ f  (1.4) 

which is va~Id for large values of the parameters 
oh ~ (g/v2) 3r, ~ .... gt 2/ (4r). Since i := (g/v2) ~A 
is large in the case of water, Formula (1.4) is 
also valid for small (non-zero) values of r (for 

- 0 , (1.4) becomes the familiar expression for 
an ideal fluid) [2 and 3]. In Formula (1.4), t 

is the time elapsed since the instant of application of the pulse, and r is 
the distance from the point of application of the pulse to the given point 
on the surface of the fluid. 

The integral effect for the motion of a point pulse may be wrltten as 

co co 

I n g l t 3  "-~T ex p . ~  --vz2t5 g/2 I ~(x: y) = 8 1 / ' 6 a ~  sin--4-rr dt  ~ lrn  ~p(t) e i ~ ( t ) d t  (t.5) 
0 0 

rng t 3 - -  vg2t  5 gt2 
~ ( t ) = - -  8 } / ~ n p  r-q-exp 8r 4 , q~ = 4r  (1.6) 

2. Let us apply the stationary phase method to the computation of inte- 
gral (1.5). (As the large parameter we can take the dimensionless quantity 
gR/(4o~), where R is the distance from the ship to the point on the surface 
of the fluid under consideration). 

The phase stationarlty condition d~/dt . 0 leads to the relation 

d r  2 r  
d-Y = T (2.t) 

From condition (1.3) we find 

r d r / d t  ~ - -  [(x - -  x , )dx i /d t  ~- (,! - -  y , )  d y , / d t ]  - -  cr cos O (2.2) 

Making use of Expressions (2.1) and (2.2) we obtain the phase statlonarity 

~ L 

0 

fi / 

condition 
r = 1/o_ ct cos 0 (2.3) 

Condition (2.3) gives us those points 
Qt which participate in the formation 

(within the limits of our approximation) of the disturbance at the point p . 

Fig. 2 Fig. 3 
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The effect of other polnts is cancelled by mutual interference ~. The points 
Q~ thus determined are called effect points. 

Expression (2.3) is the equation of a circle in polar coordinates wlth 
the pole at the point Q lying on the ship's course Z • Thus ~the point Q 
is the effect point for all points of the circle, whose dlsmeter is the tan- 
gent to the curve of the ship's course at the point Q lying at one end of 
this diameter (Pig.2). The disturbance produced by the ship does not act on 
the entire surface of the fluid, but only on the points that lie on the 
effect circles of all points Q along the ship's course. The surface waves 
produced by the moving ship are limited to the region covered by the effect 
circles, i.e. to the region bou~ed by the envelope of this one-parameter 
family of curves. We arrive at results familiar to us from the theory of 
ship waves on the surface of an ideal fluid. 

s) The contours of the disturbance region for any course of a ship 
moving with constant velocity are found, as in the case of an ideal fluid, 
by constructing the envelope of the effect circles for points lylr~ along 
the ship's course. Fig.3 shows cases where the ship moves with a constant 
velocity c along a straight path and in a circle. In the case of a straight 
course, the envelope turns out to be a pair of straight lines, and the dis- 
turbance is confined to a sector of angle 2a , Where 

= sin- '  t/3 := 1 9 0 2 8  , ( 2 . 4 )  

Strictly speaking, the disturbance produced by the ship will not be equal 
to zero outside this sector, but it will be of an ordeP of n~m~nltude lower 
than the disturbance within that region. 

b) The effect points Qi corresponding to a given point op in the 
case of motion along a straight course with constant velocity may be 
found by the usual method (Fig.4): the point p is connected by a straight 
line with the point 0 ; the segment 0P is bisected at the polnt C ; a 
circle is then constructed with CP as its diameter and the points of inter- 
section Mt and Ms of this circle with 
the 0~-axis are found. Next, laying out 
the segments Mt~t- OMt and MsQs"  OMsJ 
one obtains the required positions QL and 
Qs of the effect points. Depending on the 

Flg. 4 F i g .  5 

position of the point p , it is possible to have two, one, or no points of 
intersection Ml and M s . 

S. The analytic Investisatlon of constant-phase curves is carried out in 
the saume way as for an IdeaLl fluid. It is convenient to express phase sta- 
tlonarlty condition (2.3) by introducing the quantlty a that has the dimen- 
sion of length 

a ~-  2 c  2 ~ . ' g  = l / ,c~t2/r  ( 3 . 1 )  

We find the p h a s e  statlonarlty conditions from (2.3) and (3.1) 

ct = a c o s  O, r ~= 1/2a cos"- 0 ( 3 . 2 )  

Let us determine the constant phase curves for circular and 8tralght ship 
courses assuming that the vessel travels with a constant velocity. The for- 
mer case was considered for an ideal fluid by Sretenskll [5]. The straight 
course case can be considered as a limiting case of the circular course 
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(Fig.5) for the ship's position Q(xl, Yl) at a previous instant we have 

x l  ~ R s i n ? ,  g l  ~ R ( I  - -  c o s ? ) ,  ? = ct / R  (3 ,3 )  

where R is the radius of the shi~'s circular course, t is the time 
required by the ship to move from Q to 0 , and c is the constant velo- 
city of the ship. The coordinates of the point p at which the disturbance 
is sought are given by the expression 

x = x I - -  r COS (?  - ~  0) ,  g = Yl  - -  r s i n  (7 -q- O) (3 .4 )  

Replacing xl and Yl by their expressions in (3.3) and making use of the 
relation for r in (3.9), we obtain (3 ,5)  

x = R s i n T - - ' / 2 a c o s  2 0 c o s ( T q - 0 ) ,  y = R (l  - -  cos  T) - -  l/~a cos 2 0 s i n ( ~ q -  0) 

Let us find the geometric locus of the points for which the phase 
i.e. the quantity a in Formula (3.1) is constant. It is convenient ~o' 
introduce the dimensionless parameter 

× = a / R ( 3 . ~ }  

Applying the first relation of (3.2), we find that 

ct a 
~ - -  R - -  R c o s O ~ z c o s O  (3 .7)  

Relations (3.5) can then be written out in dimensionless form 

~x / R = s i n  (x cos  0) - -  1/2x COS 2 0  COS (0 "3 l- X COS 0)  
(3.8) 

y / R  = t ~ e o s ( × c o s 0 ) - - V 2 × c o s  ~ 0 s i n  ( 0 ~ - × c o s 0 )  

These equations express the constant-phase curves in terms of the para- 
meter 6 • Each value of a gives one such curve, since specification of 

(for a fixed value of the circular course radius R) is equivalent to 
specification of the phase ~ . Fig.6 shows several constant phase curves 
and the contours of the disturbance region computed on the basis of Equa- 
tions (3.8). We obtain two systems of waves called the system of divergent 
and the system of transverse waves (Fig.6). 

Flg. 6 

} 

Fig. 7 

Setting R ~ ® and a ~ 0 in Equations (3;8) and stipulating that 
R~ - a by virtue of (3.6), we arrive at the equations of the constant-phase 
curves for the ease of a straight ship course 

z = ' / 2  a ( 2  - -  c o ~  O) cos  O = 1/2 a ( i  -~ s i n  2 O) cos  O, Y = 1/2 a cos  2 O s i n  0 (3.9) 

Fig:7 shows the results of computations carried out on the basis of For- 
mulas ~3-9). Comparison with photographs of waves produced by a moving ship 
found in [2] indicates good agreement. 

From Equations (3.9) we have 

dx a dy a 
d'-~ = - -  - 2 -  (3 s i .  ~ 0 - -  1) s i n  O, d"~- = 2 -  (3 s i n  2 0 - -  i )  co s  0 (3. I 0 )  

~is implies that d y / d x  ffi -- i/tans , which in turn means (F~g.8) that 
the constant-phase lines are orthogonal to the lines extended to the effect 
points. The values 8 - 0* for which 3 sins e -- 1 - 0 have special cortes- 
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p o n d ~ g  p o l n t s  o n  t h e  ouFvee  a t  t h e  d l s t u ~ b a n o e  b o u n d i n g .  The e f f e e t  p o i n t s  
~ and  ~a o o ~ o $ d e  f o r  t h e s e  b o u l ~ l a ~  p o ~ t s .  C l e a r l y ~  t h e s e  p o J , n t s  a r e  

a p l o L l ,  l . e .  f l l~s t -oz~ ler  ousps. I t  18 

0 O, k O~ ~ 0 ° 

I ~ . 8  

a lso  c l e a r  t h a t  t h e  s y s t e m  9 f  d i v e , g e n t  
waves  l s  p ~ o d u o e d  { f o r  ~<  O) a s  e v a r i e s  
o v e r  t h e  :Llltex,val O* ~ 0 ~ n /2 ,  wh~ le  t h e  
t r a n s v e r s e  w i v e s  o o r ~ e s p o n d  t o  v a l u e s  o f  
e I n  t h e  I n t e r ' w a s  0 ~ 0 ~ e * .  F o r  i~> O, 
t h e  m ~ l e  0 a s s u m e s  n e g a t i v e  v a l u e s  
a c c o ~ L t r ~ l y .  

I n  a d d i t i o n ,  I t  l s  e a s y  t o  see t h a t  t o  
a n y  p o l a r  a l o n g  t h e  e h l p t e  o o ~ 8 e  (0 " O) 
t h e r e  o o ~ e s p o n d s  one  and  o n l y  one  e f f e c t  

p o ~ t  o f  t h e  t~Fpe Qm a n d  t h a t  t h l s  p o i n t  d o e s  n o t  c o t n o l d e  w l t h  P e s l n o e  
t h e  d t v e r g e l l t  waves  e n o o t m t e r  t h e  s h £ p ' s  cou I ' s e  o n l y  a t  t h e  p o i n t  O~x O, 

O) . F o r  t l ~ 8  r ~ j  t h e  s t a t l o a ~ w y  p l~ t se  m e t h ~  I s  a l s o  a p p l l o l t b l e  
~ o ;  e o ~ m t J x q ~  t h e  luui~i$tUdes o f  waves  f o r  p o l n t s  t l m t  l l e  on  t h e  s h l p * s  ootume 

Fozwnalas ( 3 . 9 )  f o r  e = 0 g i v e  us  

O B = ~ / 2 a = c ~ / g = c ~ / g  ((p = 8 ---- const)  (3.1t)  

l t enoe ,  t h e  l e n g t h  o f  t h e  t r a n s v e r s e  waves  l a  

= ~ / g (3.t2) 

t h e l r  s p e e d  o f  p r o p ~ a t $ o n  t 8  ( g ~ / 2 ~ )  1l* = c. I . e .  t h e  v e l o o l t y  o f  t h e  s h i p .  

~t. L e t  ~m o o n s l d e r  t h e  ~ t t u d e  ~ s u r t a o e  w a v e a g £ v e n  b y  our  s p p r o x t -  
u t l o n .  ~o ~o ~ s ,  we o o q ~ e  ~. d q ~ ' ,  and ~ ' ~ "  ~or values of  
tha t  s a t l a J ~  the ~ e  mta~a~uwtt7 o ~ f t t o n  ~q~/d~ = o . TaICL~ l e t s  
a c c o u n t  { 2 . P ) p  I t  I s  e lmy t o  s e e  f~om ~ 2 . 1 )  t h a t  

~ P  g (t F d~, 
- ~  - -  ~ 7  - ~ 7  d-W) (4.t)  

The v a l u e  o£ d=qt/d~ ~ a t  po:Lnt8 whe re  d ~ / d  a -  0 18 g l v e n  b y  K q u a t l o n  

~q~ gt ~ ~ r  
d o "  4r= d ~  (4.2) 

L e t  u s  e~lp~ees o u r  ~ e s u l t s  ~n t e r m s  o f  t h e  ~ l a ' u ~ t e r  O ~xu~teacl o f  t h e  
w a x ' l a b i a  ~ . ~ Fox~uul8 ( 2 . ~ )  we h a v e  dr/dr, - o s o s  e , so  t h a t  

~ r  dO 
dt ~ -- -- o s in  0 " ~  ( 4 . 3 )  

w h e r e  • l s  t h e  o o ~ t a n t  s p e e d  o f  t h e  s lurp .  To oomimte de/dr , we L n t r o -  
duoe  t h e  lu1~ie8 c and  ~ shown J ~  l P ~ . I .  Then  

d O ( d e  d x ) d ,  (de dx) 
e = = - ( ~ + ~ ) ,  -~ - -  ~ d, . . ~ - - - - c  27+.27 (4.4), 

w h e r e  • l s  t h e  az'o l e D i i t h  ~ o a i l  t h e  o u r v e  ~ . l~u~t .her ,  we h a v e  
d'r/da = 1 / ~  , w h e r e  ~ 2s t h e  rad2ue OF o u r ~ a t u r ~  o f  t h e  ouz~e  ~ , 

8 M m ' l  ~C ~ :gl d e  mm •m r 

A p p l y J ~ g  F o r m u l a s  (~ .3 )  t o  (~ ,~ )  and ( 3 . 2 ) ,  we f~, td  t h a t  

'dd~t~ " -~r ( t  - -  2trot e - -  ~ -  sin O) " ~-r t - -  3s in 'O - - ( q / R ) s i n  e(t - sis s o) 
c o ~ , O  . . . . . . .  (4.6) 

w h e r e  cl 2S g l v e n  by  F o i ~ l u l a  ( 3 . 1 ) .  
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From r e l a t i o n  ( 4 . 6 )  we may c o n c l u d e  t h a t  t h e  or t ly  c o u r s e s  f o r  wh ich  t h e  
wave wake f e f t  by  t h e  s h i p  e x p e r i e n c e s  d i s p l a c e m e n t  u n c h a n s e d  l i k e  a s o l i d  
body a r e  t h e  s t r a i g h t  and c i r c u l a r  c o u r s e s ,  i . e .  t h o s e  f o r  wh ich  ~=  c o n s t  . 

F i n a l l y ,  l e t  us  d e t e r m i n e  t h e  a m p l i t u d e  ~ ( ~ ,  y)  o f  t h e  waves  by t h e  s t a -  
t i o n a r y  phase  me thod .  The c o n t r i b u t i o n  o f  s t a t i o n a r y  p h a s e  p o i n t  ~o t o  
i n t e g r a l  ( 1 . 5 )  i s  g i v e n  by E x p r e s s i o n  

~'/'exp[i (~ (r,)-I-- "~--)}} ~(x, y )~  |m {*  (r, O)(]"q). (2rli, O)l/ (c;" (r, O) 4= o) (4.7) 

where r and O are polar coordinates that define the position of the sta- 
tlonary phase point on the course L relative to the point (x, y) (Pig.l). 
~,e sign in front of the term , ~, in the exponent is the same as that of 

d s ~/d t s • 

We shall confine ourselves to a consideration of the amplitudes for the 
straight course of the ship only. From (4.6) we have 

d2(p g t - -  3 s i n i 8  
d t  2" == 2 r  cos z 8 (4.8) 

As was shown earlier, each point in the disturbance region has two cor- 
responding values of 8 that define the effect points; let us call them 
8, and 82 • One of these belongs to the system of transverse waves 
(0 ~ 8~ 0*----- ~--~ I/ ~, and the other -- to the system of divergent waves 
(8 ~ ~Sz ~ i~). II[ the first instance the derivative ~a~/dt s is positive, 
and In the ~dcond -- negative. Formula (4.7) is inapplicable on the boundary 
of, the disturbance region, where ~- 0 . We consider this case separately. 

For points within the disturbance region (0 ~ 01 ~ 0*, e* ~ e s ~ I/s~ ) we 
obtain 

(x, y) ~ Im (r*' 01) 1/[  q~" (rl%) [ exp i ~- -~- 

Tak%ng into account Formulas (2.3), (3.1) and (1.6), we can rewrite For- 
mula (4.9) as 

{ ( '} .g. ~i,) + 
lm tf____~_~ 2vgiai sec'Ol sec' O, sin'(~_ca + ~(~, Y) 

=<'o. ,in("=' =)) 
ca a~/' ]/'l t - -  3 sin' O. I , 2c 2 -~ (4.t0) 

The two wave systems are therefore shifted in phase by ,/2 at every 
point where a,- a s (on the disturbance region boundary). Hence, if we were 
to plot the systems of divergent and transverse waves in Figs. b and 7 
making due allowanc~s for this difference in phase at the boundaries, the 
agreement of the theoretical results with photographs of waves produced by 
the motion of a ship would be seen to be even better. 

--L 
The wave amplitudes decay as ai"exp(--2vg~c-6aisecS@i). In contrast to an 

ideal fluid, the amplitudes of the divergent waves at the origin 0 do not 
become infinite. For ~ - O, (4.10) gives us the formula for an ideal fluid 

Formula (4.10) implies that the amplitudes of both wave systems become 
infl-%tely large for 8 - e*, i.e. for points on the boundary of the disturb. 
ance region. But asymptotic formula (~.7) is not applicable at such points, 
since there ~'- 0 . 

To determine the amplitude of waves along the boundary of the region 
(e - ee), let us n~tke use of the formula [2] 

r el , ) .  f e___!__~'/, ~. ~ ( z ,  y) --- Im.~ .'-~-~--~ (0") e t ' ( ' ' )  (4 . i t )  
tl q)" (0") I/ J t l',a 
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R e p l a c i n g  t h e  d e r i v a t i v e  d e / d ~  b y  ( l / r )  o s i n  e I n  ( % . 3 )  a n d  d i f f e r e n t i -  
a t i n g  the result with respect to ~ , we have 

d3r c a cos  0 s in  ~ 0 
dt s r ~ 

Recalling that r ~ 1/0c cos 0 ----- 1/2a COs ~ 0, we find that for 0 ~= 0 *  Formula 
(4.2) gives us 

d%p _ _  4gc s in2O * _ _  3gc ] / ' ~  (4.12} 
dt a a ~ cos  a O* a2 2 

Substituting the resulting expressions in Formula (#.II), we finally 
obtain 

9rag '/" F (~/3) ( - -  vg '  3 ] / -6a  ) . ga 
(x, y) ~ - -  2rip 3 '/~ c~'l'a '/~ e x p  2c 5 " ~*n2- ~ -  (4 . i3 )  

The  w a v e  a m p l i t u d e s  now d e c a y  a s  a - ' / '  e x p  [ - -  I/2vg2c-5 3 ] / ' 6 - a ] .  F o r  v ~ 0 
Formula (~.13) becomes the corresponding formula for an ideal fluid. 
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