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The problem of ship waves on the surface of an infinitely deep vlscous fluld
is considered in & simplified formulation: +the ship moving with constant
veloeity along some curvilinear path in an unperturbed fluid is replased by
as %3 disturbing center in the form of a pressure pulse on a free sur-
face .

1. We place the origin.of the coordinate system on the free surface of
the fluid in the equilibrium position and direct the z-axis vertically
upward, Let the pressure pulse (ship) move toward the origin ¢ of the
coordinate system with the constant velocity o along some curvilinear
course 1 (Fig.l1).

In]our subsequent discussion we largely follow the approach used in [2
and 3].

The ship's course 7 can be considered & curve given by the parametric
equations .
z1 = x1(2), ¥1 = y1(®)i (1.1)

where ¢ 1s the time requilred for the ship to travel from some polnt

@(x,, y; ) to its present position ¢ . Let us choose the zero time reference
in such a way that ¢ = O corresponds to the origin of the coordinate system.
The point @{x,, y, ) then moves along the ship's course. The shape of the
waves is to be determined at the instant when the ship is at the origin. The
x-axis 1s directed along the tangent to the ship's course [ at the polnt

0 in the direction opposite to the directlon of motion of the ship. The
parameter ¢ in Expressions (1.1) 1s the time taken with a negative sign.
The vector W tangent to the ship's course 7 at the point Q(x,, y, ) 1s
equal in absolute value to the velocity of the ship and directed opposite to
the direction of the ship's motion. It 1is given by

dx R dy1 . .
_c:u:#l—}—*(}tﬁj (1.2)

The point PpP(x, y) at which the amplitude of the surface waves is computed
1s given by the radius vector

*) Cherkesov's paper [1] appeared after the writing of the present study;
the results presented in [1], however, apply only to a rectilinear ship
course,
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r=(—x)it+y—mij (1.3)

The angle 9§ in Flg.l is the angle between the vector »r and the velo-
city o of the ship.

The elevation of the surface ((x, y) &t the
point. P(x, y) 1s determined by integrating the
y elevations due to a point pressure pulse moving
L " along I . Paper (4] contains an approximate
expression for this elevation due to a point pres-
sure pulse on the surface of a viscous incompres-
8(z,.9,) T sible fluild of infinite depth

mgtd —vgs p?
€ Cl_mBVﬁnpr‘ exp —ga singr (1.4)

T which is valid for large values of the parametgrs
\ O = (g/ V) dr, @, =0 gt2 /[ (4r). Since A -=: (g /v%) e
P(z.y) is large In the case of water, Formula (1.4) 1s

Fi 1 also valid for small {non-zero) values of r (for

g. v = 0, (1.4) becomes the famillar expression for

an ideal fluld) [2 and 3]. In Formula (1.4), ¢

1s the time elapsed since the instant of application of the pulse, and r 18

the distance from the point of applicatlon of the pulse to the given point
on the surface of the fluid.

The integral effect for the motion of a point pulse may be written as

0
2 13 — v 245
E(z. v =—-8—V’5g—n—g T eXp. 8:;; sinf— 4 Lt = Im\ P (1) e O (1.5)
£3 5
mg 13 — vgth gt2
\p(t)=_8“/énp re GXPT ’ ‘P=7;,— (1.6)

2. Let us apply the stationary phase method to the computation of inte-
gral (1.5). (As the large parameter we can take the dimensionless quantity
R/ (4e2 ), where R 1s the distance from the ship to the polnt on the surface
of the fluld under consideration).

The phase statlonarity condition dq;/dt = O leads to the relation

dr 2r
el 2.1
From condition (1.3) we find
rdr/dt = — [(x — x;) dry/dt 4 (4 — y,) dy, ] dt} = cr cos 0 2.2)

Making use of Expressions (2.1) and (2.2) we obtain the phase statlonarity
condition

r=1,ctcosB 2.3)

Condition (2.3) gives us those polnts
Q, which participate 1in the formation

L
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Pig. 2 Pig. 3

(within the limits of our approximation) of the disturbance at the point p.
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The effect of other points is cancelled by mutual interference'. The points
¢, thus determined are called effect points.

Expression (2.3) i1s the equation of & circle in polar coordinsates with
the pole at the poilnt ¢ 1ying on the ship's course r . Thus the point ¢
1s the effect point for all points of the circle, whose diameter 1s the tan-
gent to the curve of the ship's course at the point ¢ 1lying at one end of
this diameter (Fig.2). The disturbance produced by the ship does not act on
the entire surface of the fluid, but only on the points that lie on the
effect circles of all points ¢ along the ship's course. The surface waves
produced by the moving ship are limited tc the region covered by the effect
circles, 1l.e. to the region bounded by the envelope of thls one~-parameter
family of curves. We arrive at results familiar to us from the theory of
ship waves on the surface of an ideal fluid.

a) The contours of the disturbance reglon for any course of a ship
moving with constant velocity are found, as in the case of an ideal fluild,
by constructing the envelope of the effect circles for points lying along
the ship's course. Fig.3 shows cases where the ship moves with a constant
velocity o along a straight path and in a circle. In the case of a straight
course, the envelope turns out to be a pair of straight lines, and the dis-
turbance is confined to a sector of angle 2p , Where

o = sin /3 = 19°28 (2.9

Strictly speaking, the disturbance produced by the ship will not be equal
to zero outside this sector, but it will be of an order of magnitude lower
than the disturbance within that region,

b) The effect points Q; corresponding to a glven point p 1in the
case of motion along a straight course with constant velocity o may be
found by the usual method (Fig.4): the point p 1is connected by a straight
line with the point ¢ ; the segment ¢p 1s bisected at the point (¢ ; a
circle 1s then constructed with (¢p as its dlameter and the points of inter-
sectilon p, and N, of this circle with
the (Ox-axis are found. Next, laying out
the segments N, g, = ON, and N_.Q,=~ ONi
one obtains the required positlons @, and
¢z of the effect points. Depending on the

c[-+—»é£r-ﬁ
o |
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Fig. 4 Fig. 5

position of the point p , it is possible to have two, one, or no points of
intersection W, and ¥, .

3. The analytic investigation of constant-phase curves 1s carried out in
the same way as for an ideal fluld. It is convepient to express phage sta-
tionarity condition (2.3) by introducing the quantity o that has the dimen-
sion of length

a = 2¢% @lg = 1Yyc’*/r (3.1)
We find the phase stationarity conditions from (2.3) and (3.1)
ct = a cos 0, r == 1f,a cos® 0 (3.2)
Let us determine the constant phase curves for circular and straight ship
courses assuming that the vessel travels with a constant velocity. The for-

mer case was considered for an ideal fluid by Sretenakii [5]. The straight
course case can be considered as a limliting case of the circular course
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(Fig.5) for the ship's position @(x,, y,) at a previous instant we have
zy= Rsiny, y,= R(1 —cosy), yv=¢c/R (3.3)

where R 1s the radlus of the ship's clrcular course, ¢ 1s the time
required by the ship to move from ¢ to ¢ , and o 1s the constant velo-
city of the shlp. The coordinates of the point p at which the disturbance
1s sought are glven by the expression

z = zy — rcos (y + 0), y =y —rsin(y + 0) (3.4)

Replacling x, and y, by thelr expressions in (3.3) and making use of the
relation for r 1in (3.2), we obtain (3.5

z = R sin ¥ — Y,a cos? 6 cos (v + 6), y=R (1 — cos 7) — Y,a cos® 0 sin (1 4- 6)
Let us find the geometrlc locus of the points for which the phase B

i.e. the quantity a in Formula (3.1) 1is constant. It 1s convenilent to
Introduce the dimenslonless parameter

®x=a/R (3.6)

Applying the first relation of (3.2), we find that
ct a .
Tz-E:?-cose:%cosO (3.7)

Relations (3.5) can then be written out in dimensionless form

‘z /R = sin (% cos 8) — Y/, cos? B cos (0 4 % cos 0)

3.8
y/R =1 — cos (% cos 0) — 1/,% cos? 0 sin (@ - % cos 0) (5:8)

These equations express the constant-phase curves 1in terms of the para-
meter © . Each value of x glves one such curve, since specification of
» (for a fixed value of the clrcular course radlus R) 1s equivalent to
specification of the phase ¢ . Fig.6 shows several constant phase curves
and the contours of the disturbance region computed on the basis of Equa-
tions (3.8). We obtaln two systems of waves called the system of divergent
and the system of transverse waves (Fig.6).

L

Fig. 6

Setting R -~ » and x - O 1in Equations (3.8) and stipulating that
Rx = g by virtue of (3.6), we arrive at the equations of the constant-phase
curves for the case of a straight ship course

r=1Y0(2—cos20)cos® =1,a (1  sin?0) cos 0, y=1racos?0sinf (3.9)

Fig.7 shows the results of computations carried out on the basls of For-
mulas (3-9). Comparison with photographs of waves produced by a moving ship
found in [2] indicates good agreement,

From Equations (3.9) we have

dz a - . dy a .
-Et—=-——2——(3 sin* 0 — 1) sin 0, — == —2—-(3 sin?® — 1) cos 0 (3.10)

This implies that dy/dx = — 1/tang , which in turn means (Fig.8) that
the constant-phase lines are orthogonal to the lines extended to the effect
pointe. The values ¢ = o™ for which 38in?f6 -~ 1 = O have special corres-
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ponding points on the curves at the disturbance boundary. The effect points
¢, and @, colncide for these boundary points. Clearly, these points are
apical, 1.e, first-order cusps, It 1is
also clear that the system of divergent
waves 1s produced (for y< O) as ¢ varies
over the interval 0* < 9 § nt/2, while the
transverse waves correspond to values of
6 An the interval 0 O < 0% For >0,
the angle ¢ assumes negative values
accordingly.
Pig. 8 In addition, it is easy to see that to
. any point along the ship's course (g = 0)
there corresponds one and only one effect
point of the type ¢, and that this point does not coinecide with p since
the divergent waves encounter the ship's course only at the point otx = 0,
¥ = 0) . For this reason, the stationary phase method is also applicable
or computing the amplitudes of waves for points that lie on the ship's course

Pormulas (3.9) for 6 = O give us

OB =10 =0c¢/g=0c%/¢g (¢ = 8 = const) (3.11)
Hence, the length of the transverse waves 1s
A=2ne/g (3.12)

their speed of propagetion is (gA/2%)"* = ¢, 1.e. the velocity of the ship.

4§, Let us conaider the amplitude of surface waves given by our approxi-
mation. To 4o this, we compute ? d*p/2t*, and J%g/d¢t® for values of ¢
that satisfy the phase stationarity condition ge/dt = O . Taking into
account (2.2), it is easy to see from (2.1) that

Lo _ & ( Ll 51)
an =\l — 3 In
The value of d2q/dt® at points where d%°q/d ®>= O 1is given by Equation

e _ _ g dr
e 48 di

(4.1)

(4.2)

Let us express our results in terms of the ameter § instead of the
variable ¢t ., Prom Formula (2.4) we have dr/dt = o cos o , so that

d3r . d0
@ = —csinf— (4.3)

where o is the constant speed of the ship. To compute ao/dt , We intro-
duce the angles ¢ and rt shown in Pig.l. Then

do de  dt\ ds de |, dt
6=a—(+ 1), }7-(‘-3;'—’-;;)'7;_—0(‘;+-;) (4.4)

where g 1s the arc length along the curve [ . Further, we have
dv/de = 1/R , Where 2 1is the radius of curvature of the curve 7 ,
v —y de 1 dy dz, sin &
= (ap-! :—T:’ ds ’S[(z~zl)-d-tl‘(y-yl)7‘l]n'_7_ (4‘5)

Applying Formulas (4.3) to (4.5) and (3.2), we f£ind that

— ind —_— H -— :
%-{7(1 —-.2':-‘6—-3—sin0)-?‘; 1 —3sin’@ (Zo/:%ﬂ““ sint8) 46

where g is given by Formula (3.1).
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From relation (4.6) we may conclude that the only courses for which the
wave wake feft by the ship experiences displacement unchanged like a solid
body are the stralght and circular courses, i.e. those for which A= const .

Finally, let us determine the amplitude ((x, y) of the waves by the sta-
tionary phase method. The contributlion of stationary phase point ¢, to
integral (1.5) is given by Expression

e ) ~ {0, 0 (ormgyy) b (00 )]} @O+ @

where r and 6 are polar coordinates that define the position of the sta-
tionary phase point on the course [ relative to the point (x, y) (Pig.1).
The sign in front of the term + %n in the exponent is the same as that of
o= d*q/dt?.

We shall confine ourselves to a conslideration of the amplitudes for the
straight course of the ship only. PFrom (4.6) we have

d2@ =.L1 — 3 sin? 0
= 2 cos® (4.8)

As was shown earlier, each point in the disturbance region has two cor-
responding values of 8§ that define the effect points; 1let us call them
8, and 8, . One of these belongs to the system of transverse waves
(0<<O; < B* = sin 1/ ) 3), and the other — to the system of divergent waves
(6% <163< 17,n). I the first instance the derivative g%q/dt® 1s positive,
and In the second — negative. Formula (4.7) 1s inapplicable on the boundary
ofythe disturbance region, where "= 0 , We consi_der this case separately.

For points within the disturbance region (0 <0, <<0* 6* <0, <Yn) we
obtain

2n
£ (2, y) ~Im {11» (re 91),%“_(;—?), exp [" (q’ (r1, 8y) + ‘2‘)} +

+ P (ra, 8,) Wg—%?:ﬂ exp [i (X (rg, 6) — 'JZ_)]} (4.9)

Taking into account Formulas (2.3), (3.1) and (1.6), we can rewrite PFor-
mula (4.9) as

2mVe 2vgla, sec®0, ' sec? 8, .y £ + ") +
9 ~ =y o (- =5 ) e st + )
__ 2vgla, sec’d, sec? Oy in (2% é }
+ oxp =) sy o0 (3% — ) (@10

The two wave systems are therefore shifted in phase by n/2 at every
point where a,= g, {on the disturbance region boundary). Hence, if we were
to plot the systems of divergent and transverse waves 1n Figs, 6 and 7
making due allowances for this difference in phase at the boundaries, the
agreement of the theoretical results with photographs of waves produced by
the motion of a shlp would be seen to be even better.

The wave amplitudes decay as a;""’exp (—2vgicta; sec®6;). In contrast to an
ideal fluid, the amplitudes of the divergent waves at the origin (0 do not
become infinite. Por y = 0, (4.10) gives us the formula for an ideal fluid.

Formula (4.10) implies that the amplitudes of both wave systems become
infinttely large for ¢ = 6%, i.e., for pointe on the boundary of the disturb-
ance region. But asymptotic formula (4.7) 18 not applicable at such points,
since there ¢"= 0 ,

To determine the amplitude of waves alo the boundary of the region
(6 = 6*), let us make use of the formula [2

T (Y/s) 6 e (0%
te s ~ m {59 0 (i) ¢ } (@11
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Replacing the derivative d46/dt by (1/r)esing 1n (4.3) and differenti-
ating the result with respect te¢ ¢ , we have
d3r c® cos 8 sin2 0

at T re

Recalling that r = Y/,¢c cos 0 = 1,0 cos? 8, we find that for 0 = 0* Formula
(4.2) gives us

dr’ "~ g% cos® % o T3 (4.12)

Substituting the resulting expressions in Formula (4.11), we finally
obtain

/s ; a
£ (e, y) ~ Img " T (/3) ( —vg23 V6a ) . ga

—_ znp 3:/.‘ cx'/’a‘/’ exp 9c5 Slnz—cy (4.13)

The wave amplitudes now decay as a~'h exp [— Yyvg?c® 3 ¥V 6al. For v =20
Formula (4.13) becomes the corresponding formula for an ideal fluid.
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